Project Watch

[ Cool Ways to Help ]   [ Project Watch ]

Minecraft: We Are the Rangers

Minecraft on the African savannah

Alasdair Davies

Alasdair Davies

Alastair Davies is a tech consultant with the Zoological Society of London (ZSL). He’s been working for several years on various initiatives to educate the public and help raise awareness of endangered species, poaching, and conservation efforts around the globe. One of those projects is Instant Wild, a popular crowdsourcing app used to identify animals captured by camera traps in remote locations around the globe. He recently sent me this update. 

We wanted to reach out to new young audiences and get them excited about camera trapping and monitoring wildlife. Over 60% of the Instant Wild audience are over 30, so it was a space we wanted to fill—even more so as young people appreciating wildlife and understanding environmental change and sustainability is incredibly important.

Minecraft Ranger

Minecraft Ranger

So… we used Minecraft! (40 million players globally)

116 volunteer Minecraft players spent the last 12 months recreating an African wildlife conservancy map and added wildlife (elephants, rhinos, etc.) and actual camera traps to the game. Here’s someone playing the map and finding a camera trap, and here are people having a first play, rescuing pangolins from poachers. Read more…

[ Cool Ways to Help ]   [ Project Watch ]

The Wildlife Crime Tech Challenge

The Best and Brightest Compete to Stop Illegal Wildlife Traffic

Ground Pangolin at Madikwe Game Reserve in South Africa. Also known as the Scaly Anteater, it actually walks on its hind feet. It uses its front feet for balance. It is a very rare sight to see since it is primarily nocturnal and is hunted for its scales (for traditional Chinese medicine). Photo by David Brossard. CC-by-sa/2.0/

Ground Pangolin at Madikwe Game Reserve in South Africa. Its scales are prized in traditional Chinese medicine.
Photo by David Brossard. Flickr: CC-by-sa/2.0

Wildlife trafficking is pushing many animals closer to extinction, threatening the livelihoods of people who rely on ecotourism, and is responsible for the deaths of more than 1,000 rangers in the last decade. It’s not just elephants, rhinos, and tigers: worldwide consumer demand has pushed market prices for all kinds of animals and animal parts to record levels for exotic pets, trophies, luxury items and souvenirs, religious and cultural items, food, and traditional medicines.

This year, the U.S. Agency for International Development (USAID), in conjunction with the U.S. Global Development Lab, National Geographic, the Smithsonian Institution, and the wildlife trade monitoring network TRAFFIC created an incentive for science and tech communities to develop new and innovative ways to combat wildlife trafficking. The Wildlife Crime Tech Challenge is hoping to find new and innovative solutions for four main issues:

  • Understanding and shutting down trafficking routes
  • Improving forensic tools and data gathering to build strong criminal cases
  • Reducing consumer demand for illegal wildlife products
  • Combatting corruption along the illegal wildlife supply chain

By the end of the year, the Challenge will award prize packages of $10,000 plus technical assistance, networking support, and recognition to further the proposed solutions. Prize winners will also have the chance to win a Grand Prize of $500,000. Read more…

[ Cool Ways to Help ]   [ Project Watch ]

Birding goes hi-tech with eBird

Birders channel Audubon, with keystrokes instead of brushstrokes

Passenger Pigeon by John James Audubon

John James Audubon: Passenger Pigeons

Forget the stereotype of introverted birders with binoculars perpetually around their necks and floppy hats crowning their heads. Instead, think of serious naturalists and ornithologists in the spirit of John James Audubon in the 21st century. Today amateur and professional birders around the world are using to record their findings and observations in a database that is being used by researchers and conservation organizations to better understand biodiversity and support the global biodiversity information community.

Birds are far more than a beautiful addition to our natural world. They are critical links to the ecosystem as agents of dispersal, biological controls, and perhaps most importantly, bio-indicators.

eBird was launched in 2002 by the Cornell Lab of Ornithology and the National Audubon Society, “on behalf of the birding community to provide a rich and rapidly growing database of bird sightings worldwide.”  In the eBird mobile app, they note: “Many birders use eBird to keep track of their life lists, share their sightings with other birders, and keep their records safely backed-up. Scientists use these observations to explore patterns of bird distribution and abundance, and to better conserve birds and biodiversity.” Read more…

[ Interviews ]   [ Project Watch ]

How Cecil lived.

Cecil the Lion

Cecil the Lion by Daughter#3 (Cecil) [CC BY-SA 2.0], via Wikimedia Commons

Everyone’s heard the story of how Cecil the lion died. Technology enables us to understand how he lived.

From 2008 until his death last week, Cecil wore a satellite-tracked radio collar. David Macdonald and Andy Loveridge of the Wildlife Conservation Research Unit of Oxford University monitored Cecil’s movements and got an intimate look at what it’s like to be a male lion in the wild.

They’ve just published a history of Cecil’s life from the time he was first collared in 2008. According to Andy Loveridge, “…lion society makes ‘Game of Thrones’ look tame…” (And the story of how Cecil and his pal Jericho became allies rivals just about any plot written by Shakespeare.) Read more…

[ Project Watch ]

Navigating by the Earth’s Magnetic Field

Migrating geese, sea turtles, wolves—and worms—find their way.  And for the first time scientists think they know how.


Photo from

A team of scientists and engineers at the University of Texas at Austin has identified the first sensor of the Earth’s magnetic field in an animal, in the brain of a tiny worm. The sensor, found in worms called C. elegans, is a microscopic structure at the end of a neuron, and looks like a nano-scale TV antenna. The worms use it to figure out which way is down, as they scavenge for food.

This AFD neuron was already known to sense carbon dioxide levels, humidity, and temperature, all very handy things to know if you’re a worm.

The discovery came about as the researchers noted that C. elegans in gelatin-filled tubes moved in the direction that the worms believed was down. When they tested this phenomenon in their lab with C. elegans from various places on the globe, they observed that all of the worms didn’t move down—in fact, Australian worms moved up. Each of the worms moved at a precise angle to the magnetic field that would have corresponded to down if they had been in their local environments. Each worm’s magnetic field sensor system is apparently finely tuned to where it lives.

When the researchers altered the magnetic field around the worms, they noted that the worms changed direction to their new “down.” Worms that were genetically engineered without the AFD neuron weren’t able to orient themselves up or down.

The researchers believe that other animals probably have similar sensors, given similarities in brain structure across species. (One of the scientists has suggested that it might be possible to manage agricultural pests by manipulating magnetic fields. I find myself wondering what the unintended consequences of that will be.)

The research was published in the journal eLife in June.

[ Project Watch ]

Bad eggs

Reed warbler feeding cuckoo chick

A reed warbler feeding a “brood parasite” common cuckoo chick. Photo by Harald Olsen, via Wikimedia

For decades, researchers have been trying to figure out how birds identify and reject the eggs that other birds, known as “brood parasites,” sometimes sneak into their nests. These rogue birds don’t build their own nests, they “dump and drive”—they lay their eggs in the nests of other birds, which then may incubate and raise the imposter chicks, often at the expense of their own.

The brood parasite species include cuckoos, cowbirds, black-headed ducks, indigobirds, whydahs, and honeyguides.

This evolutionary battle between host species and brood parasites goes beyond just dropping eggs off in a random nest to hatch and mature. The imposter eggs that most closely mimic the host eggs are more likely to endure, so brood parasites learn which species’ nests to impose on. And, over time, as it turns out, host species learn to identify imposter eggs, which they then reject. So the brood parasites start producing eggs that look even more like the host species’ eggs. And so on.  Read more…

[ Project Watch ]

The fox came back. But not quite the very next day…

Sierra Nevada Red Fox

Sierra Nevada red fox caught on remote camera in Yosemite National Park

The Sierra Nevada red fox is one of the rarest mammals in North America: until recently they hadn’t been spotted in Yosemite National Park for nearly 100 years. They used to be plentiful in the region, but hunting and habitat destruction from logging, livestock grazing, and off-road vehicles have cut their population to fewer than 50 individuals. Climate change is also affecting the foxes’ habitat, forcing them farther up into the mountains. Fewer Sierra Nevada foxes mean that their genetic diversity is limited, which may have grave implications for the species’ survival.

The Yosemite Conservancy is funding a study to determine the occurrence and distribution of rare carnivores in the park. Good news: Biologists have announced that in the past two months there have been two sightings of one (or two) Sierra Nevada foxes in the northern part of Yosemite, caught on remote cameras in the back country. (It’s unclear if the cameras have caught two images of the same Sierra Nevada fox or one image each of different foxes.)

Near the remote cameras, the park’s biologists have set up hair snare stations in an effort to collect hair samples for genetic analysis. A few Sierra Nevada foxes have been seen north of the park, in the Sonora Pass area, over the past few years, and the biologists want to determine if the fox(es) spotted in Yosemite are related genetically to the Sonora Pass foxes. The more the merrier: more foxes = a more diverse gene pool, which may help the Sierra Nevada red fox stage a real comeback.